Corrective action planning using RBF neural network

نویسندگان

  • Daya Ram
  • Laxmi Srivastava
  • Manjaree Pandit
  • Jaydev Sharma
چکیده

In recent years, voltage limit violation and power system load-generation imbalance, i.e., line loading limit violation have been responsible for several incidents of major network collapses leading to partial or even complete blackouts. Alleviation of line overloads is the suitable corrective action in this regard. The control action strategies to limit the line loading to the security limits are generation rescheduling/load shedding. In this paper, an approach based on radial basis function neural network (RBFN) is presented for corrective action planning to alleviate line overloading in an efficient manner. Effectiveness of the proposed method is demonstrated for overloading alleviation under different loading/contingency conditions in 6-bus system and 24-bus RTS system. # 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial Neural Network Involved in the Action of Optimum Mixed Refrigerant (Domestic Refrigerator) (TECHNICAL NOTE)

This analysis principally focuses on the implementation of Radial basis function (RBF) and back propagation (BPA) algorithms for training artificial neural network (ANN) to get the optimum mixture of Hydro fluorocarbon (HFC) and organic compound (Hydrocarbons) for obtaining higher coefficient of Performances (COPs). The thermodynamical properties of mixed refrigerants are observed using REFPROP...

متن کامل

Evaluating Seepage of Dam Body Using RBF and GFF Models of Artificial Neural Network

Dams have been always considered as the important infrastructures and their critical values are counted. Hence, evaluation and avoidance of dams’ destruction have a specific importance. Seepage occurrence in dams is an inevitable phenomenon. Despite all the progress in geotechnical engineering, up to now, seepage problem is the main conflict which occurs in dams. This study tried to estimate se...

متن کامل

Determination of Lateral load Capacity of Steel Shear Walls Based on Artificial Neural Network Models

In this paper, load-carrying capacity in steel shear wall (SSW) was estimated using artificial neural networks (ANNs). The SSW parameters including load-carrying capacity (as ANN’s target), plate thickness, thickness of stiffener, diagonal stiffener distance, horizontal stiffener distance and gravity load (as ANN’s inputs) are used in this paper to train the ANNs. 144 samples data of each of th...

متن کامل

Forecasting Job Burnout among University Faculty Members of Yazd Payame Noor University Using Artificial Neural Network Technique

Background: Faculty members are one of the main factors in the higher education system, that high level of occupational stress caused by educational, research, and executive duties makes them exposed to burnout. The purpose of this study is Forecasting burnout of faculty members of Yazd Payame Noor University using artificial neural network technique. Methods: The present research is descripti...

متن کامل

GENERATION OF MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE ACCELEGRAMS WITH HARTLEY TRANSFORM AND RBF NEURAL NETWORK

The Hartley transform, a real-valued alternative to the complex Fourier transform, is presented as an efficient tool for the analysis and simulation of earthquake accelerograms. This paper is introduced a novel method based on discrete Hartley transform (DHT) and radial basis function (RBF) neural network for generation of artificial earthquake accelerograms from specific target spectrums. Acce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2007